Doremus
BCFoods
Química
MCassab
Barentz
Alibra
GELCO
DAXIA
Nexira
Disproquima
Genu-in
Esconder
Proteínas são moléculas de natureza heteropolimérica, de ocorrência universal na célula viva, constituindo cerca de 50% do seu peso seco. Exercem várias funções, sendo as mais frequentes a de catalisadores biológicos e componentes estruturais das células. As leguminosas, as sementes oleaginosas e as nozes, constituem os produtos vegetais mais ricos em proteínas.
As proteínas
A história das proteínas começa no século XVIII, com a descoberta de que certos componentes do mundo vivo, como a clara de ovo (albúmen), o sangue e o leite, entre outras, coagulam em altas temperaturas e em meio ácido. Substâncias com esse tipo de comportamento foram denominadas albuminóides (semelhantes ao albúmen).
O holandês Gerardus Johannes Mulder (1802-1880), professor de química em Rotterdam e depois em Utrecht, usou pela primeira vez o termo proteína (do grego proteios, primeiro, primitivo) para se referir às substâncias albuminóides. Na verdade, foi o sueco Jöns Jacob Berzelius (1779-1848), um dos mais importantes químicos da época, quem sugeriu o termo a Mulder, por acreditar que as substâncias albuminóides eram os constituintes fundamentais de todos os seres vivos.
O químico alemão Franz Hofmeister (1850-1922) sugeriu, em 1902, que as proteínas seriam formadas por aminoácidos encadeados. Enquanto prosseguiam as pesquisas sobre a natureza química das proteínas, desenvolvia-se paralelamente o estudo das enzimas (Enzimologia). Em meados do século XIX já se sabia que as enzimas apresentavam semelhanças com as proteínas. Entretanto, foi somente na década de 1930 que se esclareceu definitivamente a natureza química das enzimas: todas elas são formadas por uma ou mais moléculas de proteína. Nessa época, já era amplamente aceita a idéia de que as reações químicas vitais são catalisadas por enzimas.
Proteínas são componentes essenciais a todas as células vivas e estão relacionadas praticamente a todas as funções fisiológicas. São utilizadas na regeneração de tecidos; funcionam como catalisadores nas reações químicas que se dão nos organismos vivos e que envolvem enzimas ou hormônios; são necessárias nas reações imunológicas e, juntamente com os ácidos nucléicos, são indispensáveis nos fenômenos de crescimento e reprodução.
Quimicamente, as proteínas são polímeros de alto peso molecular (acima de 10.000), cujas unidades básicas são os aminoácidos, ligados entre si por ligações peptídicas. As propriedades de uma proteína são determinadas pelo número e espécie dos resíduos de aminoácidos, bem como pela sequência desses compostos na molécula.
Nem todos os aminoácidos participam necessariamente de uma proteína, mas a maioria desses compostos contém na molécula grande proporção de um mesmo aminoácido. Alguns aminoácidos são encontrados em poucas proteínas, porém em concentrações elevadas. É o caso da hidroxiprolina, pouco distribuída na natureza, mas constituindo ao redor de 12% da estrutura do colágeno.
A síntese de proteínas ocorre nas células vivas sob a influência de sistemas enzimáticos, e a ligação peptídica é repetida, formando cadeias longas de resíduos de aminoácidos. A condensação de menor número de aminoácidos forma compostos de peso molecular relativamente baixo (até 10.000), chamados peptídeos.
Os peptídeos são compostos cuja complexidade de estrutura está situada entre os aminoácidos e as proteínas, sendo classificados, de acordo com o número de unidades de aminoácidos de que são formados, em di-, tri-, tetrapeptídeos e assim por diante. Se o composto for formado por menos de dez unidades de aminoácidos, são denominados oligopeptídeos, ficando reservada a denominação polipeptídeos para os compostos com mais de dez unidades.
As estruturas e propriedades das proteínas e dos peptídeos também são diferentes; em geral os peptídeos, ao contrário das proteínas, possuem cadeia reta, são solúveis em água, não coagulam pelo calor e não precipitam em soluções saturadas de sulfato de amônio.
Todas as proteínas são constituídas de carbono, hidrogênio, oxigênio, nitrogênio e enxofre e possuem composição muito semelhante: 50% a 55% de carbono, 6% a 8% de hidrogênio, 20% a 24% de oxigênio, 15% a 18% de nitrogênio e de 0,2% a 0,3% de enxofre. Existem proteínas nas quais o teor de enxofre pode chegar a 5%. Muito raramente as proteínas contêm fósforo.
As proteínas sofrem mudanças nas suas estruturas com muita facilidade, o que torna bastante difícil o estudo desses compostos. Por hidrolise total, as cadeias peptídicas dão origem aos aminoácidos livres.
A degradação de proteínas, seja química (por reação com ácidos ou álcalis) ou enzimática, leva à formação de polímeros menores e, finalmente, aos aminoácidos livres.
Classificação das proteínas
As proteínas são classificadas em três grupos principais: proteínas simples, conjugadas e derivadas, sendo que na natureza são encontrados apenas os dois primeiros grupos.
As proteínas simples ou homoproteinas.
São constituídas, exclusivamente por aminoácidos. Em outras palavras, fornecem exclusivamente uma mistura de aminoácidos por hidrólise. São as proteínas que sofreram transformações enzimáticas nas células.
Várias classificações têm sido propostas para as proteínas das quais a menos comumente empregada é baseada na solubilidade desses compostos em diferentes solventes. Embora essa classificação seja mais ou menos artificial e de valor limitado devido ao fato de que algumas proteínas de estruturas diferentes são solúveis no mesmo solvente, enquanto outras de estruturas semelhantes têm solubilidades diferentes, ela é, até hoje, a mais empregada.
As proteínas mais insolúveis são as escleroproteínas, que possuem estrutura fibrosa, ou seja, são formadas por cadeias de aminoácidos colocadas paralelamente umas às outras e mantidas unidas por ligações de hidrogênio e ligações covalentes. Pertencem à classe das escleroproteínas a queratina, que é a proteína insolúvel de alguns tecidos epiteliais, e o colágeno, que é a proteína encontrada nos tecidos conectivos.
As proteínas fibrosas conhecidas são em número muito pequeno em comparação às proteínas globulares, cuja estrutura se assemelha mais a uma esfera ou a um elipsóide, e que podem ser solúveis em água, em soluções de sais neutros, ou ainda, em soluções acidas e alcalinas, e participam de todas as reações biológicas, as quais necessitam mobilidade e, portanto, solubilidade.
As proteínas simples são classificadas, de acordo com a sua solubilidade, em albuminas, globulinas, glutelinas, prolaminas, protaminas, histonas e escleroproteínas.
As albuminas apresentam como principal propriedade, que as distingue de todas as outras proteínas, a sua solubilidade em água; são também solúveis em soluções fracamente acidas ou alcalinas, e em soluções 50% saturadas de sulfato de amônio; coagulam pela ação do calor.
Exemplos de albumina incluem a clara do ovo (ovalbumina), do leite (lactalbumina) e de ervilhas (legumitina).
As globulinas são praticamente insolúveis em água, mas solúveis em soluções de sais neutros. Precipitam em soluções 50% saturadas de sulfato de amônio. Exemplos de globulina são o músculo (miosina) e ervilhas (legumina).
As glutelinas são proteínas encontradas somente em vegetais. São insolúveis em água e solventes neutros, mas solúveis em soluções diluídas de ácidos e bases. Exemplos de glutelinas incluem o trigo (glutenina) e o arroz.
As prolaminas, assim como as glutelinas, são proteínas encontradas somente em vegetais. São insolúveis em água e etanol absoluto, mas solúveis em etanol entre 50% e 80%. Entre os exemplos de prolaminas estão o trigo e o centeio (gliadina), o milho (seína) e a cevada (hordeína).
As protaminas são proteínas de baixo peso molecular, constituídas de aproximadamente 80% de arginina e, portanto, fortemente alcalinas. São solúveis em água e em amônia; em soluções fortemente acidas formam sais estáveis. São encontradas combinadas com ácido nucléico, no esperma de peixes, como por exemplo, salmão, sardinha e arenque.
As histonas são também proteínas de baixo peso molecular, e caráter básico, porém menos básico do que as protaminas, porque contêm somente de 10% a 30% de arginina na molécula. São encontradas em animais e aparentemente apenas nos núcleos celulares, onde se encontram ligadas a ácidos nucléicos. São solúveis em água e soluções diluídas de ácidos e bases. Podem ser precipitadas pela adição de amônia, a pH de aproximadamente 8,5. As histonas melhor estudadas são as extraídas da glândula timo da vitela.
As escleroproteínas são as proteínas que, devido aos seu alto grau de insolubilidade, foram definidas inicialmente como as proteínas insolúveis das células e tecidos. Pertencem à classe das escleroproteínas, que são proteínas de estrutura fibrosa, a queratina, que é a proteína insolúvel da pele e cabelos, e colágeno, que é a proteína existente nos tecidos conectivos (tendões e ligamentos). O colágeno foi considerado totalmente insolúvel até alguns anos, quando grande parte dessa proteína foi solubilizada por extração com acido acético ou acido cítrico.
Os quadros 1 e 2 apresentam, respectivamente, o teor de proteínas de alguns alimentos e o teor de aminoácidos de algumas proteínas.
QUADRO 1 - TEOR DE PROTEINAS EXISTENTES EM ALGUNS ALIMENTOS ( VEJA NO PDF ABAIXO )
QUADRO 2 - COMPOSIÇÃO EM AMINOÁCIDOS DE ALGUMAS PROTEÍNAS ( VEJA NO PDF ABAIXO )
As proteínas conjugadas.
São proteínas que por hidrólise liberam aminoácidos mais um radical não peptídico, denominado grupo prostético. Os grupos prostéticos podem ser orgânicos (como por exemplo uma vitamina ou um açúcar) ou inorgânicos (por exemplo, um íon metálico) e encontram-se ligados de forma firme à cadeia polipeptídica, muitas vezes através de ligações covalentes. Uma proteína despojada do seu grupo prostético é uma apoproteína, designando-se por vezes a proteína com grupo prostético como holoproteína. Os grupos prostéticos são um subgrupo de cofatores; ao contrário das coenzimas, encontram-se ligados de forma permanente à proteína. Em enzimas, os grupos prostéticos estão de algum modo ligados ao centro ativo. Alguns exemplos de grupos prostéticos incluem o grupo hemo da hemoglobina e os derivados de vitaminas tiamina, pirofosfato de tiamina e biotina. Por muitos dos grupos prostéticos serem derivados de vitaminas e não serem sintetizados no organismo humano, as vitaminas são um componente essencial da dieta humana. Os grupos prostéticos inorgânicos são normalmente (mas não exclusivamente) iões de metais de transição; alguns exemplos incluem o ferro (por exemplo, no grupo hemo da citocromo c oxidase e hemoglobina), o zinco (como na anidrase carbónica), o magnésio (presente nalgumas quinases) e o molibdénio (como na nitrato redutase).
Na maioria das proteínas conjugadas, a relação proteína-grupo prostético é de 1:1 com exceção das fosfoproteínas, que podem conter vários radicais de ácidos fosfóricos esterificados às hidroxilas existentes na molécula. As duas frações da molécula de uma proteína conjugada podem ser facilmente separadas por hidrólise branda, sem que a parte protéica sofra modificações. Possuem em comum a grande estabilidade da fração protéica da molécula em relação a agentes desnaturantes, propriedade essa que desaparece com a separação das duas frações.
As proteínas conjugadas são classificadas de acordo coma natureza da parte não protéica em cromoproteínas, lipoproteínas, nucleoproteínas, glicoproteínas, fosfoproteínas e metaloproteínas.
As cromoproteínas apresenta núcleo prostético constituído de um pigmento, como clorofila, riboflavina, carotenóides, pigmentos biliares e heme, sendo que este último constitui o grupo prostético da hemoglobina e da mioglobina.
Nas lipoproteínas o grupo prostético é constituído por um lipídio, como lecitina ou colesterol, formando complexos.
As nucleoproteínas são combinadas com ácidos nucléicos, que são polímeros contendo carboidratos, ácido fosfórico e bases nitrogenadas, sendo encontradas nos núcleos celulares. Sem duvida, algumas destas são as proteínas conjugadas mais importantes, devido à função de transmitirem informações genéticas.
As glicoproteínas (ou mucoproteínas) são ligadas a carboidratos, que podem ser polissacarídeos de estrutura simples, ou varias unidades de oligossacarídeos. Um exemplo de glicoproteína é a mucina, encontrada no suco gástrico.
As fosfoproteínas são combinadas com acido fosfórico e, como já mencionado anteriormente, podem conter vários radicais de acido fosfórico esterificados às hidroxilas da proteína.
As metaloproteínas são complexos formados pela combinação de proteínas com metais pesados. Em geral, o metal se encontra fracamente ligado à proteína e pode ser facilmente separado por adição de ácidos minerais diluídos.
As proteínas derivadas.
São compostos não encontrados na natureza, mas obtidos por degradação mais ou menos intensa (proteólise) de proteínas simples ou conjugadas pela ação de ácidos, bases ou enzimas. A extensão de proteólise pode ser observada pelo aumento do número de grupos carboxílicos e amínicos existentes inicialmente na proteína. As propriedades físicas das proteínas derivadas também são modificadas; há diminuição da viscosidade inicial e perdem a propriedade de serem coaguladas pelo calor.
De acordo com o peso molecular, as proteínas derivadas podem ser classificadas em primárias e secundarias.
As proteínas derivadas primárias são derivados de proteínas formados a partir de processos brandos de decomposição, que causam mudanças nas suas propriedades. Nesse processo, a cisão hidrolítica das cadeias peptídicas é muito pequena, ou pode mesmo não ocorrer como acontece no caso das proteínas desnaturadas.
Quando há cisão das cadeias peptídicas, dependendo do grau de modificação da molécula, há formação de proteanas e metaproteínas.
Nas proteínas derivadas secundarias a posterior clivagem da cadeia peptídica causa a formação de uma mistura complexa de moléculas de diferentes tamanhos, com diferentes composições em aminoácidos e, portanto, diferentes propriedades, que podem ser classificadas em proteoses, peptonas e peptídeos; finalmente, a cisão total das cadeias peptídicas leva à formação dos aminoácidos livres.
Estrutura das proteínas
Embora as proteínas variem muito em peso molecular e forma, a maioria desses compostos, nos líquidos existentes no organismo, tem peso molecular de mesma ordem de grandeza e suas formas não se desviam muito da forma de uma esfera ou de um elipsóide. Para que uma molécula de proteína adquira e mantenha essas formas, são necessárias varias e complexas interligações.
Quatro tipos de estrutura devem ser considerados para a definição da estrutura das proteínas: estrutura primária, secundária, terciária e quaternária.
Estrutura primária
A estrutura primária de uma proteína se refere apenas à sequência dos aminoácidos na sua cadeia peptídica, sem levar em consideração outros tipos de ligações, como interações causadas por forças de Van der Waals, ou ligações de hidrogênio. Nessas cadeias, o aminoácido correspondente ao terminal nitrogenado, ou seja, o aminoácido contendo o grupo amínico ou imínico livre, é denominado N-aminoácido, e o aminoácido correspondente ao terminal com o grupo carboxila livre é denominado C-aminoácido. Algumas proteínas são constituídas por mais de uma cadeia peptídica, unidas por ligações dissulfídicas. A Figura 1 mostra a estrutura primária da proteína formada por uma sequência de aminoácidos.
FIGURA 1 – ESTRUTURA PRIMÁRIA DA PROTEÍNA ( VEJA NO PDF ABAIXO )
A estrutura primária é a única que pode ser determinada por meio de reações químicas, mas as dificuldades apresentadas por essas reações fizeram com que, até hoje, apenas algumas proteínas tivessem as suas estruturas primárias completamente elucidadas. Da sequência de aminoácidos, que é única para as proteínas, dependem as outras estruturas. Os aminoácidos que compõem a cadeia peptídica podem ser facilmente identificados pela hidrólise total da proteína e separação dos produtos resultantes, o que, no entanto, não oferece qualquer indício da ordem em que esses aminoácidos se situam na cadeia.
O passo inicial para a determinação dessa sequência é a identificação do aminoácido correspondente ao terminal nitrogenado ou ao terminal carboxilado. Para a identificação dos N-aminoácidos, usualmente são empregados métodos de alquilação, por exemplo, com 1-fluoro-2,4-dinitrobenzeno (reagente de Sanger) ou acilação, por exemplo, com cloreto de benzoila, seguidos de hidrólise da proteína, como apresentado na Figura 2.
FIGURA 2 – MÉTODOS DE ALQUILAÇÃO E ACILAÇÃO ( VEJA NO PDF ABAIXO )
Devido à grande resistência à hidrólise dos produtos alquilados, a alquilação é o método mais empregado. Uma determinação do grupo terminal nitrogenado, que permite a remoção em sequência dos aminoácidos terminais, é a reação da proteína com fenilisocianato, ou fenilisotiocianato, que possibilitam por métodos brandos a remoção do aminoácido terminal, deixando intacto o resto da cadeia protéica. A Figura 3 apresenta um diagrama do método empregado.
FIGURA 3 – REAÇÃO DA PROTEÍNA COM FENILSOCIANATO OU FENILISOTIOCIANATO PARA REMOÇÃO DO AMINOÁCIDO TERMINAL ( VEJA NO PDF ABAIXO )
O composto final formado, a tio-hidantoína, pode ser facilmente separado e identificado cromatograficamente, e a proteína liberada poderá reagir novamente com fenilisotiocianato. Em teoria, esta reação poderia continuar até que o último aminoácido da cadeia fosse identificado. No entanto, a reação na prática é limitada pela falta de reatividade de alguns aminoácidos, e também por perdas inevitáveis a cada passo da reação.
Para a identificação do C-aminoácido da cadeia peptídica vários métodos podem ser empregados, entre eles, a redução do grupo carboxílico terminal à grupo hidroxílico seguido de hidrólise, ou então, a reação da proteína com tiocianato de amônio em presença de anidrido acético, com formação, também neste caso, de um composto contendo o anel da tio-hidantoína (veja Figura 4).
FIGURA 4 – IDENTIFICAÇÃO DO C-AMINOÁCIDO DA CADEIA PEPTÍDICA ( VEJA NO PDF ABAIXO )
Estrutura secundária
Resultados de análises por difração de raios X mostram que as cadeias peptídicas não são esticadas, mas torcidas, dobradas ou enroladas sobre si mesmas, podendo então adquirir varias conformações. Entre estas conformações, as de menor energia livre e, portanto, as mais estáveis, são aquelas nas quais todos os grupos –NH das ligações peptídicas estão unidos aos grupos –C=O por ligações de hidrogênio, o que leva à formação de duas organizações para as quais são propostas duas estruturas: uma, semelhante a uma folha de papel pregueada, estabilizada por ligações de hidrogênio intermoleculares, e a organização α-hélices, na qual as cadeias peptídicas formam hélices contendo em cada volta, de 3 a 5 unidades de aminoácidos, e que são estabilizadas por ligações de hidrogênio intramoleculares. As α-hélices podem estar voltadas para a esquerda ou para a direita, e as cadeias dos resíduos de aminoácidos são projetadas para fora, em direção perpendicular ao eixo da hélice, formando uma estrutura histericamente mais desimpedida e, portanto, mais estável. A Figura 6 apresenta a estrutura secundária da proteína em α-hélice.
FIGURA 5 – ESTRUTURA SECUNDÁRIA DA PROTEÍNA ( VEJA NO PDF ABAIXO )
As proteínas globulares são mais compactas do que as fibrosas, mas ainda assim não perfeitamente esféricas. As cadeias, nas proteínas globulares, são dobradas varias vezes, segundo um modelo determinado, o que confere propriedades específicas a essa classe de proteínas.
Outros grupos, além das ligações peptídicas, podem participar das ligações de hidrogênio, como os grupos hidroxílicos, amínicos e imínicos das cadeias laterais dos aminoácidos.
Estrutura terciária
A estrutura terciária se refere a posteriores dobras e enrolamentos que as cadeias peptídicas sofrem, resultando em uma estrutura complexa e mais compacta para as proteínas. A estabilização dessa estrutura é atribuída a ligações covalentes, como por exemplo, ligações -S-S- em proteínas ricas em aminoácidos contendo enxofre e, inclusive, em ligações eletrovalentes causadas pela atração que as cadeias laterais carregadas positiva e negativamente exercem entre si (Veja Figura 6).
FIGURA 6 – ESTRUTURA TERCEÁRIA DA PROTEÍNA ( VEJA NO PDF ABAIXO )
Infelizmente, nem sempre existem condições para que determinada dobra ou volta de uma cadeia peptídica seja atribuída à sua estrutura secundária ou terciária, razão pela qual seria mais conveniente o emprego dos termos sequ6encia da cadeia para a estrutura primária, e conformação da cadeia para as estruturas secundárias e terciárias em conjunto. A conformação da cadeia de uma proteína é determinada única e exclusivamente pela sua estrutura primária.
Estrutura quaternária
Uma proteína natural pode ser formada por duas ou mais cadeias peptídicas associadas. Nesta associação, denominada estrutura quaternária das proteínas, estão envolvidas as mesmas ligações das estruturas secundárias e terciárias, com exceção das ligações covalentes.
A conformação tridimensional das proteínas não é alterada em meio aquoso ou em soluções diluídas de sais, propriedade essa muito importante, uma vez que as reações biológicas das proteínas se dão nesses meios. A estrutura quaternária surge apenas nas proteínas oligoméricas.
A formação da estrutura quaternária é principalmente devida às superfícies hidrofóbicas das proteínas, como mostra a Figura 7.
FIGURA 7 – ESTRUTURA QUATERNÁRIA DA PROTEÍNA ( VEJA NO PDF ABAIXO )
Propriedades físicas das proteínas
Sendo macromoléculas de estruturas extremamente complexas, as proteínas são compostos sem odor e sem sabor.
Os métodos geralmente empregados para a determinação de peso molecular de compostos orgânicos (abaixamento do ponto de congelamento, aumento do ponto de fusão, ou ainda, diminuição da pressão de vapor do solvente) não podem ser empregados para as proteínas, devido ao alto peso molecular desses compostos. Tomando como exemplo uma proteína de peso molecular 200.000 para preparo de uma solução de 0,1 ou 0,01 M, seria necessário 20.000 ou 2.000 gramas de proteínas por litro, o que seria irrealizável. Existem, no entanto, vários métodos para a determinação do peso molecular desses compostos, sendo bastante empregado o método baseado na ultracentrifugação.
A solubilidade das proteínas dependerá do número de grupos hidrofílicos e hidrofóbicos e da distribuição desses grupos na molécula. Essa propriedade varia entre limites muito amplos e o comportamento das proteínas com relação a diferentes solventes; como mencionado anteriormente, é um dos critérios empregados para a classificação das proteínas simples.
Muitas proteínas, principalmente as de origem vegetal, foram obtidas na forma cristalina. Entre as de origem animal, as hemoglobinas são facilmente cristalizáveis.
As proteínas possuem também caráter anfótero, uma vez que são compostos com grande número de cargas positivas e negativas, provenientes dos grupos amínicos e carboxílicos livres dos resíduos de aminoácidos carregados positivamente ou negativamente.
Devido ao grande número de grupos que podem interagir reversivelmente com prótons, em um intervalo grande de pH, soluções de proteínas têm excelente ação tamponante. Em determinado pH, como no caso dos aminoácidos que é específico para cada proteína, as cargas positivas e negativas se igualam, formando um “Zwitterion” (veja Box abaixo) polivalente. É o ponto isoelétrico (pI) das proteínas; também como no caso dos aminoácidos, nesse ponto, a soma total das cargas elétricas é igual a zero e não há migração do composto quando colocado em campo elétrico. Nesse ponto, a solubilidade em água, a viscosidade e a capacidade de intumescimento das proteínas atingem o mínimo.
BOX
Zwitterion, do alemão "zwitter" (híbrido), "sal interno" ou "íon dipolar" é um composto químico eletricamente neutro, mas que possui cargas opostas em diferentes átomos. O termo é mais utilizado em compostos que apresentam essa cargas em átomos não-adjacentes. Podem se comportar como ácidos ou bases, portanto são anfóteros.
Os aminoácidos, por exemplo, se comportam como ácido por causa do seu grupo (-COOH) e se comportam como bases por causa do seu grupo (NH2). Isso possibilita a reação da parte ácida com a parte básica, gerando um sal. Como ela se dá no mesmo composto, o sal formado é chamado de "sal interno".
Em soluções, os grupos de cargas opostas das proteínas interagem entre si, formando ligações eletrovalentes tanto no interior da molécula, como entre moléculas adjacentes. Essa interação diminui quando o solvente é a água; esse fenômeno é causado pela alta constante dielétrica da água. As moléculas de água se combinam com os grupos polares das proteínas, e a sua solubilidade tende a aumentar. No ponto isoelétrico, como já mencionado, o número de cargas positivas se iguala ao número de cargas negativas, aumentando o número dessas interações e diminuindo a solubilidade das proteínas. A adição de pequenas quantidades de sais, por exemplo NaCI, aumenta a solubilidade, fazendo com que proteínas insolúveis em água se solubilizem. Esse fenômeno é geralmente denominado dissolução por sais (salting in) e é causado pelas forças de atração entre os íons de proteínas e os íons de sal. Quando grande quantidades de um sal solúvel em água são adicionadas às soluções de proteínas, acontece o fenômeno inverso: há uma diminuição da atividade da água, diminuindo a interação entre a água e os grupos polares da proteína, diminuindo, assim, a sua solubilidade, sendo a proteína, então, precipitada; esse fenômeno é denominado de precipitação por sais (salting out).
Reações químicas
As proteínas pelos seus grupos amínicos livres reagem com ninidrinas, formaldeído e acido nitroso, de maneira análoga aos aminoácidos livres.
Quando em solução, as proteínas podem se combinar com íons positivos e negativos, formando precipitados, sendo essa reação empregada na obtenção de proteínas de uma solução.
Os íons positivos se combinam com as proteínas na forma de íons negativos, ou seja, em meio alcalino, com formação de precipitado de proteinato metálico,do qual a proteína pode ser obtida na forma livre pela adição de ácidos. Ao contrário, íons negativos se combinam com proteínas em soluções ácidas, nas quais as proteínas se encontram na forma de íons positivos, formando sais de proteína, nos quais as proteínas são facilmente obtidas na forma livre por adição de álcalis.
Em muitos alimentos existem misturas de proteínas que se encontram em pH diferentes do seu ponto isoelétrico e, nestas condições, existe a possibilita desses compostos se ligarem a cátions existentes no meio, com formação de precipitados.
Quando soluções de proteínas em meio fortemente alcalino são tratadas com soluções diluídas de íons cúpricos, há o aparecimento de cor característica, que varia de rosa a púrpura. A cor, aparentemente, é devida ao complexo formado pelos íons de cobre e o nitrogênio das ligações peptídicas, como mostra a Figura 8.
FIGURA 8 – COMPLEXO FORMADO PELOS ÍONS DE COBRE E O NITROGÊNIO DAS LIGAÇÕES PEPTÍDICAS ( VEJA NO PDF ABAIXO )
Dipeptídeos não dão a reação de biureto, sendo necessárias, no mínimo, duas ligações peptídicas para que a reação ocorra. Esta reação é amplamente usada tanto para a detecção, quanto para a determinação quantitativa de proteínas.
Além das reações descritas,os grupos reativos existentes nas cadeias dos resíduos de aminoácidos sofrem, naturalmente, reações características desses grupos. Por exemplo, proteínas contendo radicais sulfídricos ou dissulfídicos, como a cistina e a cisteína, quando em soluções aquosas podem sofrer as reações apresentadas na Figura 9.
FIGURA 9 – REAÇÕES DE PROTEÍNAS CONTENDO RADICAIS SULFÍDICOS OU DISSULFÍDRICOS QUANDOEM SOLUÇÕES AQUOSAS ( VEJA NO PDF ABAIXO )
Ligações dissulfídicas são cadeias laterais encontradas em proteínas e podem ser intra ou intermoleculares. Nas proteínas monoméricas as ligações dissulfídicas são formadas quando a cadeia protéica se enrola, estabilizando a estrutura secundária.
A ligação díssulfeto é reduzida facilmente a radicais -SH, em reação reversível, como mostra a Figura 10.
FIGURA 10 – LIGAÇÃO DÍSSULFETO REDUZIDA A RADICAIS -SH ( VEJA NO PDF ABAIXO )
Hidratação das proteínas
Uma das propriedades mais importantes das proteínas é a facilidade com que esses compostos se combinam com água, uma vez que todas as reações biológicas se processam em meio aquoso. A reação de hidratação das proteínas se deve às propriedades das moléculas de água e consiste na formação de uma ligação entre os dipolos da água e íons ou grupos iônicos e polares das proteínas
-NH+3, -COO- , -OH, -CO-, -NH-, etc.
Formando complexos estáveis, dependo do composto, e modificando as suas propriedades físico-químicas.
A quantidade de água que se liga a uma proteína depende, principalmente, da relação proteína/água. Como as moléculas de água de hidratação ainda possuem, pelo menos, mais um par de elétrons livres, poderão facilmente se ligar a outras moléculas de água, formando várias camadas ao redor da proteína.
Quando carboidratos, alcoóis, eletrólitos e outras substâncias capazes de sofrer hidratação são adicionadas à soluções de proteínas, pode haver competição pelas moléculas de água, com diminuição do grau de hidratação destes compostos.
Viscosidade de soluções de proteínas
A viscosidade das soluções de proteínas varia muito, dependendo da concentração das soluções e da estrutura molecular da proteína.
Soluções de gelatina são extremamente viscosas, enquanto que as proteínas do soro formam soluções de viscosidades muito baixas, mesmo em concentrações muito altas. O aumento de viscosidade é causado, principalmente, pela interação eletrostática entre diferentes moléculas de proteínas e pela interação entre as cadeias peptídicas de uma mesma molécula.
Soluções de proteínas de moléculas longas, esticadas, possuem viscosidade maior do que soluções de proteínas globulares; proteínas de mesma conformação dão soluções tanto mais viscosas, quanto maior for o tamanho das moléculas.
Desnaturação
A desnaturação é um processo que consiste na quebra das estruturas secundária e terciária de uma proteína. As proteínas, quando submetidas a aquecimento, agitação, radiações ultravioleta e visível, raios X, sofrem mudanças nas suas propriedades, sendo destruídas principalmente as suas propriedades fisiológicas. Essas mudanças podem ser causadas também por agentes químicos, como ácidos e bases fortes, determinados solventes orgânicos, determinados compostos orgânicos neutros e metais pesados, que não afetam a sequência dos aminoácidos, mas causam transformações na molécula, tendo como conseqüências a insolubilização das proteínas e a dificuldade de cristalização desses compostos. Proteínas com ação enzimática são inativadas quando submetidas a esses processos ou à ação desses agentes.
As proteínas assim modificadas são denominadas de proteínas desnaturadas, e o fenômeno é denominado de desnaturação das proteínas. A facilidade com que muitas proteínas são desnaturadas faz com que o estudo do fenômeno se torne difícil. Aparentemente, a desnaturação tem como resultado uma mudança na conformação, rompendo ligações que estabilizam essa conformação, causando um desenrolamento das cadeias peptídicas, e em conseqüência, as proteínas se tornam menos solúveis e quimicamente mais reativas. As proteínas nativas solúveis em sais no seu ponto isoelétrico, em geral se tornam insolúveis quando desnaturadas. O fenômeno da desnaturação não implica necessariamente na diminuição da digestibilidade das proteínas.
Efeitos de agentes desnaturantes sobre as proteínas
As estruturas secundárias e terciárias, como foi visto, são estabilizadas por ligações de hidrogênio, ligações covalentes, e ainda por ligações eletrovalentes entre grupos carboxílicos e amínicos livres das proteínas. quando ácidos minerais são adicionados a uma solução de proteinas, os íons –COO- são convertidos em –COOH, deixando os grupos –NH3+ onalterados. Ao contrário, bases fortes convertem os íons –NH3+ em grupos –NH2, enquanto os íons –COO- permanecem com cargas. Desse modo os grupos de cargas contrárias, que antes contribuíam para a estabilização da conformação das proteínas, desaparecem, e os grupos de mesma carga vão se repelir, causando o desenrolamento da cadeia peptídica. O calor não muda a carga das proteínas, mas rompe as ligações de hidrogênio que estabilizam a sua conformação causando também o desenrolamento da cadeia e consequentemente desnaturação. A insolubilidade das proteínas tratadas pelo calor poderia também ser atribuída a uma mudança nas ligações –S-S-.
Algumas dessas ligações poderiam se romper pela ação do calor e se recombinar com resíduos diferentes formados pela cisão de outras ligações –S-S-.
A composição dos aminoácidos que compõem uma proteína afeta a sua estabilidade térmica. Se houver maior proporção de aminoácidos hidrofóbicos a proteína tende a ser mais estável do que as mais hidrofílicas.
A desnaturação por substâncias neutras, aparentemente não reativas, é difícil de ser explicada. Por exemplo, altas concentrações de uréia desnaturam proteínas mesmo à temperatura ambiente. Uma explicação para isso é atribuída a ação desnaturante da uréia às suas ligações -C-O e -NH que podem formar ligações de hidrogênio com as ligações peptídicas comprometidas em ligações de hidrogênio intramoleculares da proteína natural, rompendo essas ligações e destruindo a sua estrutura original. Há evidências também de que a uréia e a guanidina podem romper as interações hidrofóbicas, promovendo a estabilidade em água dos resíduos hidrofóbicos.
Detergentes sintéticos são agentes desnaturantes bastante efetivos; podem se ligar quimicamente às partes hidrofílicas e hidrofóbicas das proteínas, formando uma ponte e diminuindo as forças hidrofóbicas que estabilizam a estrutura das proteínas nãos desnaturadas.
Dependendo das condições, as proteínas podem ter diferentes estados de desnaturação com graus de energia livre ligeiramente diferentes.
Em alguns casos, se no início do processo de desnaturação o agente desnaturante for retirado, é possível que a proteína reverta ao estado natural. Por exemplo, existe um equilíbrio entre hemoglobina natural e hemoglobina desnaturada em solução de salicilato, cujo ponto de equilíbrio dependerá da concentração do sal. Outro exemplo é a tripsina que, quando aquecida entre 70°C e 100°C em soluções acidas por curto tempo, se torna insolúvel em soluções de sais e perde a sua atividade proteolítica. Se a solução acida for resfriada em determinadas condições, a proteína pode readquirir a solubilidade e a atividade enzimática originais.
O desenrolamento das cadeias peptídicas causado pela desnaturação torna essas cadeias mais esticadas, o que causa aumento da viscosidade das proteínas e modificações nas suas propriedades químicas. O número de grupos reativos aumenta com a desnaturação, sendo esse aumento causado pelo rompimento das ligações de coordenação antes existentes, e também porque com o desenrolamento da cadeia, alguns grupos reativos, antes inacessíveis, se tornam mais expostos e, portanto, fáceis de serem atacados por reagentes químicos.
Geralmente, a desnaturação causa insolubilização das proteínas e, no caso dos alimentos, pode causar também a perda de algumas propriedades funcionais. No entanto, a desnaturação em alguns casos é desejável, por exemplo, a gelificação de uma proteína pelo calor só acontece se houver previa desnaturação térmica.
As proteínas nos alimentos
Essenciais para o organismo, as proteínas estão presentes em diversos tipos de alimentos, em maior ou menor quantidade, e quando são ingeridas, são absorvidas para, enfim, desempenhar as suas funções no organismo, seja na composição do músculo, propiciando a sua contração, na defesa do organismo ou na transformação de energia. Além disso, as proteínas constituem a chamada massa corporal magra e, por esse motivo, são indispensáveis na dieta.
Entre os alimentos mais ricos em proteínas estão as carnes que, por serem músculos ou vísceras, são consideradas verdadeiras fontes de proteínas. O leite, os ovos e todos os outros derivados também fazem parte dessa lista, assim como os cereais integrais, os feijões, e diversos legumes e folhosos que possuem alta concentração protéica.
As proteínas provenientes de alimentos de origem animal são consideradas de alto valor biológico, pois fornecem uma quantidade de aminoácidos proporcional ao corpo. No caso dos alimentos vegetais, as proteínas presentes neles precisam ser conjugadas com outros alimentos do mesmo grupo.
O Quadro 3 apresenta a porcentagem de proteínas da parte comestível de alguns alimentos.
QUADRO 3 – PORCENTAGEM DE PROTEÍNAS DE ALGUNS ALIMENTOS ( VEJA NO PDF ABAIXO )
Proteínas da carne
As proteínas mais importantes são as proteínas do músculo, Aproximadamente 40% do peso de uma pessoa adulta consiste de músculo, o qual, por sua vez, é constituído de aproximadamente 20% de proteínas. Aparentemente, existe pouca diferença nas proteínas das carnes de diferentes espécies animais.O estudo dessas proteínas é dificultado pelas mudanças que se processam no tecido animal com a interrupção das funções do organismo.
A miosina, uma das proteínas do músculo, é uma globulina de estrutura bastante simétrica, obtida do músculo por extração com soluções fracamente alcalinas ou soluções de sais. Possui peso molecular de aproximadamente 500.00 e é formada por duas cadeias idênticas de peptídeos, cada uma na forma de uma α-hélice; essas duas cadeias juntas são torcidas, formando uma hélice dupla.
É uma proteína que contém muitos aminoácidos com grupos livres carregados positiva e negativamente; as ligações peptídicas nas quais participam aminoácidos básicos são rompidas pela enzima tripsina.
Outra proteína do músculo, a actina, pode existir em duas formas: a G-actina, proteína globular de peso molecular 60.000 e que pela adição de sais neutros pode polimerizar, formando a F-actina, uma proteína fibrosa.
A actina e a miosina podem se combinar facilmente formando a actomiosina, um complexo constituído por uma molécula de miosina e uma ou duas moléculas de actina.
As proteínas dos tecidos conectivos constituem a parte mais insolúvel e menos digerível da carne. De fato, a rigidez da carne pode ser medida pela quantidade de tecidos conectivos existentes.
A fração principal dos tecidos conectivos é constituída pelo colágeno, uma proteína muito solúvel e que concorre largamente para a rigidez da carne. Uma fração do colágeno parcialmente solubilizado é a gelatina, uma proteína que deve sua grande importância ao fato de ser solúvel em água quente e formar géis por resfriamento. Não tem cheiro nem sabor. É rica em arginina, mas de pouco valor em relação à quantidade dos outros aminoácidos essenciais. A glicina constitui entre 25% e 35% do colágeno.
Proteínas do leite
A principal proteína existente no leite fresco é a caseína, uma fosfoproteína que se encontra na forma de sal de cálcio coloidal. É formada de micelas, que junto com a gordura, resultam na cor branca do leite.
A caseína é uma mistura de várias fosfoproteínas muito semelhantes, as α-, β-, γ- e k-caseína, constituindo aproximadamente 80% das proteínas totais e 3% do teor de proteínas do leite. Coagula pela ação da renina, uma enzima encontrada no suco gástrico, dando a paracaseína. No leite, a caseína se encontra na forma de polímeros, ou seja, várias cadeias peptídicas unidas, cada cadeia com peso molecular de aproximadamente 20.000. A caseína é precipitada não só pela renina, mas também por ácidos, mas não coagula pelo calor.
Quando a caseína é precipitada, na solução sobrenadante denominado de soro, restam ainda mais duas proteínas, ambas já obtidas na forma cristalina: a lactoalbumina, uma albumina que constitui aproximadamente 0,5% das proteínas totais do leite, solúvel em água, com peso molecular de aproximadamente 20.000, que coagula pelo calor, e contém alto teor de triptofano; e a lactoglobulina, encontrada em quantidades menores do que 0,2%. À 20°C e pH de aproximadamente 6,5, pode existir em duas formas em equilíbrio: um monômero e um dímero, de peso molecular 18.000 e 36.000, respectivamente. Possui composição e conformação semelhante a da lisozima, uma proteína encontrada na clara de ovo. Na sua constituição fazem parte grupos -SH.
Proteínas do ovo
A clara de ovo consiste em uma mistura de proteínas muito diferentes entre si, nas quais a mais importante é a ovalbumina, que constitui 50% das proteínas totais da clara. Foi obtida na forma cristalina pela primeira vez em 1982. Possui peso molecular de 45.000 e contém na molécula grupos -SH e grupos de acido fosfórico, que podem ser hidrolisados pela ação de fosfatases. Os grupos -SH só reagem quimicamente na proteína desnaturada. Na ovalbumina existem também pequenas quantidades de manose e 2-amino2-desoxi-ribose. Quando em solução, a ovalbumina pode ser desnaturada por agitação. Coagula por aquecimento.
Outra proteína, a conalbumina, é precipitada na forma não cristalina, por adição de sulfato de amônio, após a cristalização da ovalbumina. Possui peso molecular de aproximadamente 85.000. Coagula pelo calor, a temperaturas mais baixas do que a ovalbumina (abaixo de 60°C) e forma complexos estáveis com íons di e trivalentes. Não possui fósforo nem grupos -SH na molécula, mas possui uma fração de carboidratos, constituída de manose e galactose.
Uma fração considerável da clara de ovo é formada por uma glicoproteína, rica em ligações dissulfídicas, a ovomucóide, obtida por tratamento da clara de ovo com sulfato de sódio ou de amônio, antes do isolamento da ovoalbumina. Em soluções alcalinas, a ovomucóide é facilmente desnaturada pelo calor.
A clara de ovo contém ainda a ovomucina, outra glicoproteína que por eletroforese é separada em três componentes. Em solução, mesmo alcalina, é resistente ao calor.
A avidina, outra proteína da clara de ovo, é uma desoxi-ribonucleoproteína importante, principalmente devido à sua propriedade de se ligar à biotina, impedindo a ação dessa vitamina pertencente ao complexo B, o que causa o chamado “mal da clara de ovo” nos animais alimentados com clara de ovo crua.
A clara de ovo contém também uma enzima, a lisozima, que constitui aproximadamente 3% da clara de ovo, e que tem ação nas paredes celulares de algumas bactérias. Pode formar com a ovomucina um complexo solúvel em água, que contribui para a estrutura do gel do albúmen. A lisozima é facilmente inativada pelo calor.
Quando a gema do ovo é submetida à ultracentrifugação, é separada em duas frações; a fração que sedimenta contém duas proteínas, a lipovitelina e a fosfovitina (ou fosvitina), e solução sobrenadante contém a livitina. A lipovitelina é uma proteína cujo grupo prostético é um fosfolipídio. Possui peso molecular ao redor de 500.000 e a pH acido forma um dímero. À medida que o pH aumenta, as cadeias peptídicas que formam o dímero vão se separando até chegarem à forma monômera.
A fosfovitina contém aproximadamente 10% de fósforo na molécula e somente 12% de nitrogênio; representa 80% das fosfoproteínas existentes na gema do ovo. Possui peso molecular entre 35.000 e 40.000 e forma um complexo estável com íons férricos, tendo, portanto, a capacidade de arrastar íons férricos existentes na gema.
A livitina, proteína que fica na solução sobrenadante da centrifugação da gema, é uma proteína constituída por três componentes, α, β e γ-livitina e que se identificam, respectivamente, com a albumina do soro, α-glicoproteína e γ-globulina.
Proteínas do trigo
Entre as proteínas do trigo, as mais importantes pertencem à classe das prolaminas (gliadina) e das glutelinas (glutenina), encontradas no endosperma do trigo. Assim como as proteínas vegetais, possuem pouco valor nutricional, resultante da deficiência de aminoácidos básicos na fração predominante, que é formada pela prolaminas.
A gliadina é facilmente obtida no estado puro por extração com etanol a 70%. É solúvel também em outros alcoóis, tais como metílico, benzílico, e fenol. Pode ser separada em varias frações, variando os pesos moleculares de 21.000 a 50.000.
A glutenina é a mais insolúvel das proteínas do trigo. É insolúvel em água e etanol a frio, e ligeiramente solúvel em etanol a quente; é solúvel em soluções alcalinas. A insolubilidade da glutenina se deve ao seu alto peso molecular, na ordem de 100.000, o que é responsável também pela alta viscosidade dessa proteína.
Essas duas proteínas combinadas possuem a propriedade de formar com água uma substância elástica e aderente, insolúvel em água, o glúten, extremamente importante por ser a substância responsável pela textura da massa de pães fermentados. O glúten pode ser seco a pressões reduzidas e baixas temperaturas sem sofrer desnaturação, mas é desnaturado rapidamente à temperatura de ebulição da água ou quando exposto durante longo tempo a temperaturas mais baixas.